P2.2-5) The position of a particle is given by $s = 5t^3 - 60t^2 + 150t - 20$ meters, where t is in seconds. Plot the position (s), velocity (v) and acceleration (a) as functions of time between t = 0 and 6 seconds. Determine at what time the velocity is zero. Also, determine the displacement and the total distance traveled between t = 0 and 6 seconds.

Given:

Find:

Solution:

Plot the particle's position between 0 and 6 seconds.

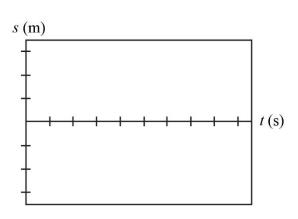
Derive the particle's velocity as a function of time.

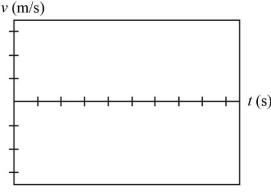
Circle the equation that you will use?

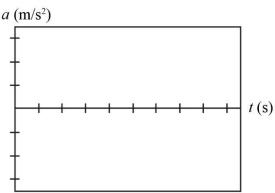
$$v = \frac{ds}{dt}$$
 $a = \frac{dv}{dt}$ $a ds = v dv$

$$v(t) =$$

Plot the particle's velocity between 0 and 6 seconds.


Derive the particle's acceleration as a function of time.


Circle the equation that you will use?


$$v = \frac{ds}{dt}$$
 $a = \frac{dv}{dt}$ $a ds = v dv$

$$a(t) = \underline{\hspace{1cm}}$$

Plot the particle's acceleration between 0 and 6 seconds.

Determine the time at which the particle's velocity is zero.	Calculate the particle's displacement between 0 and 6 seconds.
 t = Calculate the particle's position at key times. Calculate the particle's position at 0 seconds and then at 6 seconds. 	$\Delta s =$ Calculate the particle's total distance traveled between 0 and 6 seconds.
$S_{t=0} = \underline{\hspace{1cm}}$	
$s_{t=6}$ = Does the particle turn within the time span of 0 and 6 seconds? Yes No	
If the particle turned, calculate the particle's position at the turn.	$s_{\text{total}} = 394 \text{ m}$
$s_{\text{turn}} = \underline{\hspace{1cm}}$	